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A dilution algorithm for neural networks 
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16, D-W6300 Giessen. Federal Republic o f  Germany 

Received 9 December 1991, in final form 13 February 1992 

Abstract. A dilution algorithm to enlarge the storage capacity per synapse c q ,  of neural 
networks is proposed. The algorithm is a hybrid method. where Hebb’s rule is used lo 
select a fraction of couplings to be removed. Afterwards the perceptron of optimal stability 
for the remaining couplings is learned. We present an analytical calculation and the results 
of the numerical simulations. In comparison with the fully connected or the randomly 
diluted perceptron, the effective storage capacity eCt, is remarkably enlarged. 

In recent years attractor and feedfonvard neural networks have gained a great amount 
of interest (for an introduction see e.g. Hertz et a/ [l]). Feedfonvard networks can be 
used to classify a set of given patterns. One of the interesting parameters of such a 
network is the critical storage capacity a,, which is the ratio of the maximum number 
p of patterns that can be learned perfectly and the number N of input neurons. The 
perceptron [2] is the simplest feedfonvard network and in the thermodynamic limit 
( N  + m) its critical storage capacity has been shown to be a, = 2, if the p given patterns 
are in general position [3]. A recent result by Bouten et a1 [4] seems to contradict, at 
first sight, the above limitation for a,. Bouten er al performed a Gardner calculation 
[ 5 ]  of the phase space volume in order to determine a, in the case of an optimally 
diluted perceptron. The ratio between the maximum number of patterns p ,  that can 
be learned perfectly and the number of the remaining neurons in the network Nf, 

can be much greater than 2 and even diverges logarithmically in the limit f+O. 
Although analytical calculations [4,6,7] and extensive numerical simulations [8] 

have been done in the field of the dilution of the perceptron, there has not yet been 
found any algorithm that yields aer> 2. In this letter we present both an analytical 
calculation and numerical simulations for a dilution algorithm that results in aeN>2. 

To introduce our algorithm we consider a simple feedforward perceptron that 
consists of N neurons S, and a single binary output. T h e  network is required to store 
p = aN patterns cy, p E 11,. . . , p } ,  j E { 1 , .  . . , N } .  The 67 are chosen independently 
according to the Gaussian distribution 

Each pattern has a binary output S’ E {-1, 1) that has to be retrieved by the network. 
The outputs are chosen independently with p ( S ’ )  =f. 
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The perceptron problem is to find a vector J = ( J , ,  . . . , J N ) T  that maps all the 
p = aN aptterns to the right outputs: 

S”=sign 1 J&J for all Y =  1 , .  . . , p .  (2) 
( j : ,  ) 

This is equivalent to the condition 

E , = -  J + J > O  forall Y = 1,. . . , p  (3) 
1 N  

J N j 4  
for the local fields E” of the p modified patterns UJ = S”g,”. The stability K of the 
perceptron is defined as 

K = min {E “}/a (4) 

where Q = I/  N E,”, J j  is the square of the norm of the couplings. The perceptron of 
maximal stabilify fulfils 

E ” 3 1  for all U =  I , .  . . , p  ( 5 )  

with minimal Q. The critical capacity E,(.) of this perceptron of maximal stability 
has been calculated by Gardner [SI. 

Motivated by Sompolinsky [9] and Domany ef a1 [lo], we introduce the following 
algorithm: In order to dilute we calculate the N Hebb couplings [ l l ]  

and use them for the removal of N( 1 -f) many sites: All the sites j whose absolute 
values IBjl are lower than a threshold value s will be removed. On the remaining Nf 
sites the problem of finding the perceptron of optimal stability has to be solved. 

The dilution f can be computed as a function of the threshold value s as follows: 

(7) 
forxa0 
for x < 0. 

where O(x) = 
1 N  
N i = l  

f =- 1 @(lBj l - s )  

Since the u ” = ( u ;  ,..., u L ) ~  are Gaussian, the vector B = ( B  ,,..., 
uncorrelated Gaussian distribution. 

has an 

As f is self-averaging for N + m, we obtain 

f = 2 Q  -- ( A 
where Q(x) = JZw dA/& e-**’. 

So we know how to choose the threshold for the Hebb couplings in order to get a 
dilution f: We label the remaining sites by k and start the Gardner calculation with 
the canonical partition function 
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are our new integration variables. cj denotes whether a site is removed: where the 

Note that in equation (9) the temperature parameter p controls the square of the norm 
of the couplings. p must not be confused with the temperature parameter in [121, 
which controls the number of errors. We checked that the ansatz in equation (9) is 
equivalent to the one in [SI. 

We assume that the free energy g = -( I / p N )  In Z is self-averaging: 

1 
lim g =  lim --((lnZ)) 
N-m N-m P N  

where ((. . .)) denotes the average over the modified pattems {U;}, 

(see van Hemmen and Palmer [131). The matrix 
The right-hand side of equation (11) is calculated by means of the replica method 

1 N  
Nf j-I 

Q ~ = -  1 r;qw(le;l-s) 

appears $5 a saddle point variable in the replica calculation, where BJ is defined by 

If we assume replica symmetry, Q,,, = Q Vp,  Q, = q, p # U, then Q yields the square 
of the norm of the couplings and q describes the overlap between two different solutions 
of the perceptron problem. 

The stability K = l/a is given by equation (4). Thus, if we let p tend to infinity, 
our theory describes the perceptron of optimal stability. After a transformation of 
variables we obtain the following result in the limit p -* m. 

Given a dilution f and a stability K the critical capacity a c ( l  K )  is obtained from 

(12) 
f 

( f / /Zc)(~ - a)2+ ( 1  + a’)@(a)+ (a /&)  exp(-fa’) 

f ( E j )  =I, dBJ f (BJ)S(BJ-Bj). 

a, = 

where C is given by 

W 
c(w) =- exp(-+w’) (13) 

and w is equal to s/& in equation (8). The saddle point variable a is the solution of 

The function aen for our dilution rule is shown in figure 2 below. 
Our numerical simulation is a hybrid method, which corresponds exactly to the 

analytical calculation described above. Hebb’s rule is used to learn the given patterns. 
Then all the synaptical strengths lej( s s are set to zero. Afterwards the couplings are 
learned on the remaining sites using the AdaTron rule 1141. 

Since numerical simulations are restricted to a finite number N of neurons, learning 
binary pattems with Hebb’s rule has the unpleasant disadvantage of highly degnerate 
E, values. Hence the synapses that are to be cut in order to get a specified dilution f 
cannot be determined uniquely. Therefore we use Gaussian distributed patterns in 
order to reduce these finite size effects. 
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The AdaTron algorithm uses the embedding strengths x” as its dynamical variables 
instead of the couplings .J = ( J , ,  . . . , JN)‘. The couplings and the embedding strengths 
are related through the following equation: 

The dynamical equation is 

x y r  +1) = x ” ( t ) + W ( t )  forall U =  1 , .  . . , p  (16) 
where 

W ( t )  = max{y(l- E”), -x”}. (17) 
Note that x” a0 is always fulfilled. We define the positive semidefinite correlation 
matrix C with elements 

(18) 

f being the fraction of all connections that still remain in the system and e, as in 
equation (10). The field E’ of the pattern v can be written as 

E = C x  (19) 

The dynamical updating rule for the x” described above will be repeated until the 

(20) 

Our diluted network relaxes exponentially towards the perceptron of optimal stability 
for the Nfremaining neurons. After the AdaTron algorithm has converged, we calculate 
the stability of the network by means of equation (4). 

For f = 1 one knows that it is difficult to obtain small values of K by numerical 
simulations [ 151, because near the critical point aem for K = 0 the learning time diverges 
for any known perceptron leaming rule [ 161. In order to obtain aCmfrom the simulation 
data one has to extrapolate to K = 0. 

However, in our case we can calculate analytically . (a) for any given value o f f :  
So we are able to compare these curves directly to the results of our numerical 
simulations. This can be seen in figure 1 for some dilution values 1: We find that the 
data from the simulations, performed for N = 2 0 0  neurons, and averaged over 50 
samples, is in very good agreement with the theoretical curves. 

In figure 2 we plotted the aCw values, i.e. the fraction p /  Nf where K = 0, versus the 
dilution fi For comparison two curves determined by Bouten et al are also given. The 
straight line corresponds to the ‘quenched dilution’ case, in which a certain fraction f 
of couplings is removed at  random without retraining. As one could expect this 
procedure does not change the effective storage capacity, aCn( f) = 2 for all 1: The 
upper curve corresponds to the (as named by Bouten et al) ‘annealed dilution’ case. 
This is the result of their replica symmetric calculation, yielding the curve for the 
‘optimal‘ (ICm. But we have to keep in mind that up until now there has been no 
algorithm that corresponds to these theoretical calculations. We also want to remark, 
at this point, that it has recently been found that the replica symmetric solution of 
Bouten et al is unstable [17]. In our case replica symmetry breaking effects, if they 

1 N  
Nf j = i  

C”’=- 1 c,u)?uy 

where the p-vectors are given by x = (x’, . . . , xP)’ and E = (El, .  . . , EP)’. 

following condition is met for all v: 

either (x’=Oand €”a 1) or (x”>O and E’= 1). 
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a 
Figure 1. Shown is the stability K(U) for the given values of/: Our numerical simulations 
(symbols) arc compared with the analytical results (solid curves). The statistical errors are 
of the same order as the symbol sizes. 

~ 

-- Annealed - Hybrid 
100 :, Quenched 

f 
U 

f 
Flgurr 2. The effective storage capacity us,,= a// is given as a function of the dilution f 
for r = O  for the annealed dilution (uppsr curve) case for the hybrid method (middle 
curve), and the quenched dilution (lower curve) case from Bouten et 01. 

exist, are expected to be iess important with respect to qN, since the resuits oi the 
simulations coincide with the analytical results. 

Our results are given by the solid line. Like the two other curves it also starts at 
f= 1 and aeN= 2. For decreasing f the performance of our hybrid algorithm is much 
better than random dilution, and aam diverges in the limit f+O. So the qualitative 
behaviour is similar to the replica symmetric solution of Bouten el a/. 

ance than our hybrid method. For example it is possible to dilute in several steps, each 
consisting of removing bonds according to some rule and releaming for the remaining 
ones. We have some preliminary results of such a method using the AdaTron algorithm 

'.~"".~..."...~ dr n.lnn+;tr+iua m m n s r i a n n  '"...~".."-..."-CICI"." rasooert= thit  ... I .-...-. nther alonrithmc -.D1..- ..... I-... erid I. with better I nerfnm. r-..." .... ~ 
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after each dilution step [18]. They indicate that this method has a better performance 
than the hybrid method, but still the curve presented by Bouten er al is not reached. 
Details will be given in a forthcoming paper. 

In this sense our algorithm can be regarded as a first step. But such an iterative 
procedure is not possible with Hebb's rule. After cutting and applying it again, the 
values of the remaining couplings do not change. An interesting and still open question 
is whether any algorithm can be found, that meets the 'optimal curve'. For practical 
applications we think the efficiency of the hybrid method presented here is better than 
an iterative dilution process. Hebb's rule needs much less numerical operations than 
an iterative algorithm, where for example the optimal perceptron has to be learned 
after each dilution step. The benefits of a somewhat greater storage capacity will be 
compensated by the great amount of computational effort. 

To summarize, we presented a first, rather simple algorithm for dilution, which 
yields mem> 2. By using Hebbs rule to classify couplings of low importance, removing 
them and calculating the optimal perceptron matrix, the effective storage capacity is 
remarkably enlarged. 

The authors would like to thank M Opper, W Kinzel and M Biehl for many stimulating 
discussions. The numerical simulations were camed out on the CRAY Y-MP of the 
HLFU Jiilich. The work was supported by grants of the Deutsche Forschungsgemein- 
schaft. It is part of the PhD Thesis of PK and of HE. 
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